Research Scientist (San Francisco)

San Francisco, CA /
Engineering /
Full-Time
Summary

This role is about investigating the fundamental questions of intelligence, knowledge and understanding in order to develop software with human level intelligence. You will collaborate internally and externally with other researchers, and be supported by a team of research engineers.

Research areas of interest
Unsupervised RL
Self-supervised learning
Multi-task RL
Meta-learning
Continual learning
Deep learning theory
Generalization
Human-like learning
Network architecture search
etc.


You are

A highly accomplished machine learning researcher (e.g., a track record of high quality papers at top conferences like NeurIPS, ICML, ICLR, etc., or equivalent accomplishments in industry).
Able to create research questions that clarify the nature of the problem being solved, and coordinate a research program to successfully answer those questions.
Extremely comfortable running ML experiments.
Able to clearly communicate about your ideas and intuitions.
Excited to mentor a small team of great research engineers.


Benefits

Work directly on answering the fundamental questions of intelligence, learning, and knowledge, free from politics and pressures to publish or commercialize your research.
Generous compensation, equity, and benefits.
Actively co-create and participate in a positive, intentional team culture.
Frequent team events, dinners, off-sites, and hanging out.
$20K+ yearly budget for self-improvement: coaching, courses, conferences, etc.


How to apply

All submissions are reviewed by a person, so we encourage you to include a cover letter. If you have any other work that you can showcase (open source code, side projects, etc), you should certainly include it!

We try to reply either way within a week or two at most (usually much sooner).

We know that talent comes from many backgrounds, and with many different skills and preferences. That’s why we have a hiring process that gives you the ability to showcase yourself in a variety of different ways, depending on what feels best for you.

Learn more about our full interview process here.


About us

We started Generally Intelligent because we believe that software with human-level intelligence will have a transformative impact on the world. We’re dedicated to ensuring that that impact is a positive one.

We have enough funding to freely pursue our research goals over the next decade, and our backers include Y Combinator, researchers from OpenAI, Astera Institute, and a number of private individuals who care about effective altruism and scientific research.

Our research is focused primarily on self-supervised and generative video and audio models. We’re excited about opportunities to use simulated data, network architecture search, and good theoretical understanding of deep learning to make progress on these problems. We take a focused, engineering-driven approach to research.