Machine Learning Research Engineer (San Francisco)

San Francisco, CA /
Engineering /

In this role you’ll work with our researchers to do cutting-edge deep learning research—conducting experiments, creating infrastructure, and developing tooling & visualizations—with the goal of developing more human-like machine intelligence.

Note: This research role requires being onsite in San Francisco. If you're remote, please take a look at our Machine Learning Engineer (Remote) role, which is more engineering-heavy.

Example projects

Implement a self-supervised network using contrastive and reconstruction losses.
Create a library on top of PyTorch to enable efficient network architecture search.
Implement networks from newly published papers.
Run massively parallel experiments to understand all variants of an architecture.
Develop more realistic simulations for training our agents.
Create visualizations to help us deeply understand what our networks learn and why.

You are

Passionate about understanding the fundamentals of intelligence.
Very comfortable writing Python.
Excited to be a world-class ML engineer.
A fan of pair programming.
Passionate about engineering best practices.


Work directly on creating software with human-like intelligence.
Generous compensation, equity, and benefits.
$20K+ yearly budget for self-improvement: coaching, courses, conferences, etc.
Actively co-create and participate in a positive, intentional team culture.
Spend time learning, reading papers, and deeply understanding prior work.
Frequent team events, dinners, off-sites, and hanging out.

How to apply

All submissions are reviewed by a person, so we encourage you to include notes on why you're interested in working with us. If you have any other work that you can showcase (open source code, side projects, etc.), certainly include it! We know that talent comes from many backgrounds, and we aim to build a team with diverse skillsets that spike strongly in different areas.

We try to reply either way within a week or two at most (usually much sooner).

Learn more about our full interview process here.

About us

We started Generally Intelligent because we believe that software with human-level intelligence will have a transformative impact on the world. We’re dedicated to ensuring that that impact is a positive one.

We have enough funding to freely pursue our research goals over the next decade, and our backers include Y Combinator, researchers from OpenAI, Astera Institute, and a number of private individuals who care about effective altruism and scientific research.

Our research is focused primarily on self-supervised and generative video and audio models. We’re excited about opportunities to use simulated data, network architecture search, and good theoretical understanding of deep learning to make progress on these problems. We take a focused, engineering-driven approach to research.