Advanced Technologies Group Research Fellowship [Fall]

Brooklyn /
ATG Fellowship /
Full Time
About Paperspace

Paperspace is a high-performance cloud computing and ML development platform for building, training and deploying machine learning models. Tens of thousands of individuals, startups and enterprises use Paperspace to iterate faster and collaborate on intelligent, real-time prediction engines.

Paperspace is backed by leading investors including Battery Ventures, Intel Capital, SineWave Ventures, Sorenson Ventures, Y Combinator and Initialized Capital.

Paperspace Advanced Technologies Group

Paperspace ATG is the internal R&D arm of Paperspace and is tasked with exploring advanced topics in machine learning, data engineering, and UI/UX for developing intelligent applications.

The Research Fellowship is a semester-long paid program that is designed to bring in Graduate students from a wide variety of disciplines who want to apply their passion for research in a practical setting.

The ATG accepts two fellows each semester and two during the summer. Research fellows are paired with a Paperspace engineer to advance and document their research project.

Research Areas

The ATG is currently engaged in the following active areas of research. Not all projects fall directly under any single area but generally these areas encompass the types of projects that we believe we can best contribute to.

Deep Tech This research track is designed to push the limit of current machine learning algorithms, applications, or foundational knowledge. Past fellows have taken on GPU kernel development, adversarial auto-encoders, and other advanced topics in the deep learning space.

Tooling / Interfaces This research track is designed to push the boundaries of what is possible with ML interfaces (GUI, CLI, and others). Topics such as experiment tracking, visualization techniques, and novel ways of modeling complex data and interactions fall under the scope of this research area. Past fellows have worked to making pre-trained deep learning models more accessible to a broader audience through new abstractions and interfaces.

Education / Accessibility This research track is designed to expand the accessibility of existing ML and deep learning techniques through education and advocacy. As more and more advanced topics come from academia, there exists a larger and larger divide between experts and novices. Furthermore, how can we open up deep learning to new audiences and not just experts? Questions of fairness, bias, openness are at the center of this conversation.
If you have any additional questions, you can reach out to

We are an equal opportunity employer that values and welcomes diversity. We are committed to building a team that represents a variety of backgrounds, perspectives, and skills.

All qualified applicants will receive consideration for employment without regard to race, color, religion, gender, gender identity or expression, sexual orientation, national origin, genetics, disability, age, or veteran status.

Please apply via Lever -